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ABSTRACT
Although they are polymorphic (multiphase) materials, both copper and silver are reliable Hugoniot standards, and thus it is necessary to
establish an accurate analytic model of their principal Hugoniots. Here we present analytic forms of their principal Hugoniots, as well as
those of iridium and platinum, two “pusher” standards for shock-ramp experiments, over a wide range of pressures. They are based on our
new analytic model of the principal Hugoniot [Burakovsky et al., J. Appl. Phys. 132, 215109 (2022)]. Comparison of the four Hugoniots with
experimental and independent theoretical data (such data exist to very high pressures for both copper and silver) demonstrates excellent
agreement. Hence, the new model for copper and silver can be considered as providing the corresponding Hugoniot standards over a wide
pressure range. We also suggest an approach for calculating the Grüneisen parameter along the Hugoniot and apply it to copper as a prototype,
and our results appear to be in good agreement with the available data.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0124555

I. INTRODUCTION

In modern static devices [diamond anvil cells (DACs)], sam-
ples can be pressurized to a few megabars. Shock-wave experiments
allow higher pressures to be attained, for example, 5–10 Mbar in
light-gas guns in a plane geometry. There are different schemes for
such experiments. Among these, the so-called impedance-matching
scheme clearly stands out. In this scheme, a uniform shock wave is
initially generated in the standard, by an explosion, by a strike from
an accelerated plate, or by laser-irradiation-induced ablation. Next,
the shock wave penetrates the sample. The impedance-matching
technique is reviewed in detail in Ref. 1. This technique is the most
widely used, because a two-layer target consisting of a well-studied
substance (a standard) and the sample under investigation is best
suited for carrying out a large number of measurements.

In these experiments, the possibilities for obtaining the desired
data are rather limited. The simplest and most reliable are measure-
ments of shock velocities Us in both substances. If the equation of
state (EOS) of the standard is known, then it can be used along with
the two known Uss to calculate the particle velocity Up in the sample.
With these data, combined with the Rankine–Hugoniot relations,
the density ρ of the sample, and the pressure P and internal energy
E behind the shock front can be determined. If only the Hugoniot

of the standard is known, then the Up in the sample will be calcu-
lated approximately. The closer the dynamic rigidities of the sample
and the standard, the more accurate will be the calculation of Up and
of ρ, P, and E. In any event, accurate knowledge of the Hugoniot of
the standard is crucial: errors in the Hugoniot standard propagate as
systematic errors in the inferred density and pressure in shock-wave
experiments. This is particularly pertinent for highly compressible
materials such as deuterium and helium.

In previous studies at Los Alamos, Al-24ST aluminum alloy
and brass were used as the standards for investigating light and
heavy substances, respectively.2,3 In the USSR, iron was used as the
standard.4 The corresponding Hugoniots of these three metals were
determined via the experimental scheme of colliding plates of the
same material. However, none of these three metals represents a
reliable Hugoniot standard. In iron, at 13.2 GPa, a phase transi-
tion from the body-centered cubic (bcc) α-Fe phase (which is the
ambient solid phase of Fe) to the hexagonal close-packed (hcp) ε-
Fe phase occurs on its principal Hugoniot (see Ref. 5 for a review),
and the two structures have different EOS. A second phase transi-
tion, from ε-Fe to another solid phase of iron, prior to melting on
the Hugoniot, may have been seen in experiments,6,7 but to date its
occurrence has been a subject of debate in the literature (see Ref. 8
for a review). In an experiment in which 4 Gbar, one of the highest
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Hugoniot pressures reported in the literature so far, was achieved,9
a material whose physical properties can be approximated well by
those of iron, namely, type 20 steel with a density of 7.85 g/cm3, was
used as a Hugoniot standard. As claimed in Ref. 9, it was chosen
because both the Hugoniot and isentropes of Fe deviate only slightly
from the predictions of Thomas–Fermi-type models in the region
of thermodynamic variables required for the analysis of the experi-
mental data of Ref. 9. Thus, iron could serve as a Hugoniot standard,
albeit at much higher pressures; at low and moderate pressures, iron
is not suitable to be considered as a reliable Hugoniot standard. Sim-
ilarly, neither aluminum nor brass are suitable as standards, because
the phase diagram of Al contains three solid phases, fcc, hcp, and
bcc,10 with EOS quite different from each other, and there may be
a fcc–bcc solid–solid phase transition along the Hugoniot.11 Brass
is rather elastic, which limits from below the pressures at which its
Hugoniot standard can be considered as reliable.

Both copper and silver are free from the above disadvantages.
They are plastic materials, and so their characteristics of shock-wave
and static compression agree well with each other. Besides being
ductile, copper, silver, and gold are the three most malleable met-
als of all. Both copper and silver are polymorphic materials, and
each of them experiences an fcc–bcc solid–solid phase transition
along the Hugoniot.12,13 However, in both cases, the EOS of the fcc
and bcc phases are very close to each other, and the volume change
at the transition is very small, in view of the fact that the fcc–bcc
solid–solid phase boundary is virtually flat in both cases,12,13 and so
the Clausius–Clapeyron relation ΔV/ΔS = dT/dP ≈ 0 gives ΔV ≈ 0.
Hence, both solid structures can be reliably described by a common
EOS. Since the volume change at melting is also small, each of the
two Hugoniots is virtually continuous across both the solid–solid
phase transition and melting. Thus, either of the two substances
represents a very reliable Hugoniot standard.

We note that wide use of the impedance-matching method
described above requires the availability of several Hugoniot stan-
dards with different dynamic rigidities. Another two materials,
namely, platinum and iridium, have been suggested both as
Hugoniot standards and as “pusher” standards for modified shock-
ramp experiments on the Z platform at Sandia National Laboratories
(SNL).14 The technique of modified shock-ramp experiments is
similar to the impedance-matching one, since a pusher is inserted
between an electrode (a flyer) and the sample such that the ini-
tial shock-ramp compression wave is generated in the pusher and
then enters the sample.15 Both Pt and Ir could be considered as
“ideal” pusher materials because of their high acoustic impedances
(to avoid re-shock reflection from the sample), low sound speeds to
delay reverberation (being among the materials having the highest
densities of all), and low degree of nonlinearity in compression to
minimize steepening. However, they cannot be considered as reli-
able Hugoniot standards, because of the presence of a structural
phase transition, namely, an fcc–randomly disordered hcp (rhcp)
solid–solid one. This transition was theoretically predicted to occur
in both Pt16 and Ir,17 and the most recent experimental studies seem
to confirm its occurrence.14,18 Specifically, an anomalous velocity
dispersion is observed in Pt ramp-compressed from a ∼85 GPa-
shocked state on the driven side of the sample, at ∼150 GPa and
T ∼ 2000–3000 K (according to the EOS), which are the P–T condi-
tions of the rhcp phase.16 This dispersion is real and reproducible:
VISAR contrast decreases when it occurs, different velocities are

observed in different (closely spaced) probes, and it is observed in
both free-surface and windowed samples, at a velocity correspond-
ing to the same driven-side pressure.14 In Ir, a phase transition
is detected in the shock-compression data at a particle velocity of
∼1.3 km/s (P ∼ 170 GPa) from piecewise fitting of the data,18 which
is consistent with the P = 166.5 GPa predicted theoretically for the
fcc–rhcp transition on the Ir Hugoniot.17

Hence, only Cu and Ag remain as the most reliable candidates
for Hugoniot standards. Hence, an accurate model of their princi-
pal Hugoniots is really necessary, and not only for the processing
of the shock-wave data, but also for the ruby pressure scale, which
we now dwell on in some more detail. The ruby pressure scale, in
which P is measured on the basis of the R1 line shift of ruby lumi-
nescence, is one of the most widely used pressure standards in DAC
experiments. To date, the most popular calibration of this pressure
scale has been that of Mao et al.,19 who measured the R1 line shift
in an argon medium up to a pressure of 80 GPa while the pres-
sure was determined from room-temperature isotherms of Cu and
Ag calculated by Carter et al.20 on the basis of the corresponding
shock-wave data alone (without taking into account ultrasonic mea-
surements). Since then, the range of shock-wave data on both Cu and
Ag has been expanded significantly; for example, the experimental
shock-wave data on Cu now extend up to as high as 20.4 TPa.21 For
Ag, the experimental shock-wave data are available to 300 GPa.22

In what follows, we present a new analytic model for their principal
Hugoniots that is applicable over a wide pressure range.

The use of Cu as an absolutely calibrated sound-velocity stan-
dard for high-precision measurements at pressures in excess of
400 GPa was advocated in Ref. 23, in which the results of absolute
measurements of the Hugoniot and sound velocity of copper for
pressures from 500 to 1200 GPa were presented. The shock Hugo-
niot of Cu was calculated theoretically in Ref. 24 for the purpose
of using Cu as a shock standard. In the experiments reported in
Ref. 9 and mentioned above, shock velocities of ∼350 km/s, and
accordingly pressures of ∼7.5 Gbar (7.5 × 105 GPa), were achieved in
the iron standard (and, respectively, ∼450 km/s and ∼4 Gbar in Al,
whose Hugoniot was measured). Since the locations of Fe (Z = 26)
and Cu (Z = 29) in the periodic table are close to each other, and
since the basic mechanical and thermodynamic variables scale with
atomic number Z (in particular, P/Z10/3 is a function of ZV , where V
is the molar volume),25 future experiments on Cu should be expected
to achieve shock velocities and pressures of similar magnitude. Since
such shock velocities and pressures correspond to the Hugoniot
turnaround point (discussed in what follows), it is essential to have
available a reliable analytic model of the Cu Hugoniot over a very
wide pressure range, including that of its turnaround point. The
need for knowledge of the analytic form of the principal Hugoniot
of Cu over a wide pressure range was also emphasized by Kalitkin
and Kuz’mina.26 The importance of a reliable analytic model of the
principal Hugoniot in a general case that covers a pressure range
extending well beyond that of the turnaround point is discussed in
more detail in Sec. III.

We note that some other substances have been proposed as
Hugoniot standards, such as molybdenum27 and SiO2, as both
α-quartz27–30 and fused silica, the amorphous form of SiO2.31 How-
ever, a detailed discussion of both the advantages and shortcomings
of their use in shock-wave experiments goes beyond the scope of this
work.
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II. PRINCIPAL HUGONIOT OVER A WIDE
PRESSURE RANGE

We will construct analytic models of the principal Hugoniots of
the four shock standards, namely, two Hugoniot standards Cu and
Ag, and two pusher standards Ir and Pt for modified shock-ramp
experiments, using the analytic framework established in our pre-
vious publication.32 In this framework, a wide P range is divided
into three regimes, and the Hugoniot is constructed in each of
these regimes and then interpolated smoothly between them. These
regimes are (i) the low-P regime in which the Hugoniot is described
by Us = C + BUp, where Up and Us are the particle and shock veloc-
ities, respectively, and the values of C and B come from experiment,
(ii) the intermediate-P regime (discussed in more detail below)
where the Hugoniot is described by the Thomas–Fermi–Kalitkin
(TFK) model33,34 Us = c + bUp + aU2

p , with the values of c, b and
a determined virtually for all Zs,33–35 and (iii) the high-P regime
in which the Hugoniot is described by the Debye–Hückel–Johnson
(DHJ) model.36–38 The only assumption that is made is that the prin-
cipal Hugoniot is governed by some function Us = Us(Up) (which
is linear at low P and quadratic at intermediate P; its high-P form
was established in Ref. 32) and that this function is continuous
and smooth (the first derivative dUs/dUp is continuous) at all Up.
Then it follows from the Rankine–Hugoniot relations32 that com-
pression ratio, pressure, and internal energy are all continuous and
smooth as well. No other assumptions, and no additional free para-
meters except the six mentioned above, namely, C, B, c, b, a, and
Z, are required for the construction of the analytic model of the
principal Hugoniot. To match the next regime, the linear form

of the low-P regime is modified to Us = C + BUp + AU2
p , where A

is an additional, seventh, parameter that introduces a very small
nonlinearity (A ∼ 10−2 s/km) and is obtained using the formula
A = a − (B − b)2/[4(c − C)].32

The names of the three P regimes of the principal Hugoniot
may sound confusing and may not correspond to those adapted
in high-pressure research in general and phase diagram and EOS
studies in particular. Specifically, high-P is generally taken to mean
pressures in excess of ∼100 GPa. In our case, the low-P–med-P
transition point corresponds to shock velocities of ∼10 km/s (see,
e.g., Table I); with ambient densities of ∼1–10 g/cm3, this corre-
sponds to pressures of ∼100–1000 GPa. Thus, our med-P regime
is analogous to the more familiar high-P range of EOS studies.
Our med-P–high-P transition point corresponds to P ∼ 1–10 Gbar
(105–106 GPa).

The following is a brief summary of the new analytic model, as
per Ref. 32. This model is based on the following representation of
the shock velocity Us as a function of the particle velocity Up over the
three Up intervals that is continuous and smooth from one interval
to the next:

Us =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C + BUp + AU2
p , 0 ≤ Up ≤ U∗p =

2(c − C)
B − b

,

c + bUp + aU2
p , U∗p ≤ Up ≤ U∗∗p = nU∗p ,

− d
f
+ 4

3
Up +

dUp

1 + f Up
, Up ≥ U∗∗p .

(1)

The corresponding expressions for P along the principal Hugoniot
are

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4ρ0C2η(η − 1)

{η − B(η − 1) +
√
[η − B(η − 1)]2 − 4AC(η − 1)2}

2 , 0 ≤ Up ≤ U∗p ,

4ρ0c2η(η − 1)

{η − b(η − 1) +
√
[η − b(η − 1)]2 − 4ac(η − 1)2}

2 , U∗p ≤ Up ≤ Umax
p =

√
c
a

,

4ρ0c2η(η − 1)

{η − b(η − 1) −
√
[η − b(η − 1)]2 − 4ac(η − 1)2}

2 , Umax
p ≤ Up ≤ U∗∗p ,

ρ0

4 f 2
η

η − 1
(
√

12d
η − 1
η − 4

+ 1 − 1)
2

, Up ≥ U∗∗p ,

(2)

which define the pressure along the Hugoniot as a continuous
and smooth function of compression ratio η ≡ ρ/ρ0, where ρ is the
density and the subscript 0 indicates the initial (unshocked) state.

In the above formulas, 0 ≤ Up ≤ U∗p corresponds to the low-
P regime, and Umax

p ≤ Up ≤ U∗∗p and Up ≥ U∗∗p to the med-P and
high-P regimes, respectively. The value of U∗∗p is found from the
equation32

[c + (b − 4
3
)U∗∗p + aU∗∗2

p ]
2
= L(b − 4

3
+ 2aU∗∗p ). (3)

Here, L ≡ 2
3 E, where E = Ecoh + Edis + Eion is the sum of cohesive,

dissociation and ionization energies in going from ambient T to
T →∞.32 Thus, L = 2

3 E ≈ 2
3 Eion, since Eion ≫ Ecoh and Eion ≫ Edis.

Following Ref. 38, we adopt Eion ≈ 13.6Z2.4 eV/atom. We tested this
formula against the experimental total ionization energies from Ref.
39 for 1 ≤ Z ≤ 29 (Cu), and the experimental and (or) theoretical
ones from Ref. 40 for the remaining Z up to Z = 118 (oganesson,
Og). We determined that the average root-mean-square deviation of
the values it predicts from the corresponding experimental and/or
theoretical values across the periodic table is less than 2%. The
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TABLE I. Numerical values of the parameters for the analytic model of the principal Hugoniot for the two Hugoniot standards Cu and Ag and the two shock-ramp pusher standards
Ir and Pt.

Z
ρ0

(g/cm3)
C

(km/s) B
A × 102

[(km/s)−1]
c

(km/s) b
a × 105

[(km/s)−1]
L

[(km/s)2] d
f × 103

[(km/s)−1]
U∗p

(km/s)
Umax

p
(km/s)

U∗∗p
(km/s)

Cu 29 8.93 3.916 1.511 −0.792 967 7.122 46 1.190 06 10.118 8 44 885.5 0.883 324 4.436 16 19.981 7 265.308 887.140
Ag 47 10.49 3.242 1.564 −1.581 93 5.555 33 1.180 44 7.969 30 84 067.7 5.209 64 7.872 07 12.062 4 264.025 1241.07
Ir 77 22.56 3.884 1.635 −2.545 91 5.939 09 1.176 98 6.077 85 155 527 7.347 45 6.873 30 8.973 80 312.597 1673.11
Pt 78 21.45 3.627 1.533 −1.541 17 5.685 52 1.176 07 6.042 27 157 978 11.947 4 8.696 38 11.534 6 306.750 1698.75

largest deviation, ∼9%, is for He. Since one mole corresponds to
A gram, where A is the atomic mass, we have

L ≈ 9.07Z2.4 eV
atom

≈ 875Z2.4 kJ
mol
= 875

Z2.4

A
(km

s
)

2
.

Taking into account that A/Z ≈ 2 + 0.006Z (which is very accurate
for Z ≳ 641), and hence A ≈ 2Z + 0.006Z2, this reduces to

L ≈ 875Z2.4

2Z + 0.006Z2 (
km

s
)

2
. (4)

In the above formulas for P, U∗p ≤ Up ≤ Umax
p and Umax

p ≤ Up
≤ U∗∗p correspond to the two sub-regimes of the med-P regime,
namely, those below and above the turnaround point of Umax

p

=
√

c/a.32 Theoretical calculations show that in the 100–500 Mbar
range, the Us–Up dependence is also nearly linear, with a slope
whose value is basically universal for all of the substances, ∼1.2; see
Fig. 2 of Ref. 38, Fig. 2 of Ref. 42, Fig. 2(a) of Ref. 43, and Fig. 10.2
of Ref. 44. The physical reasons for this behavior of Us = Us(Up)
are analyzed in detail by Johnson36,37 and Nellis and co-workers.43,44

Johnson45 also explains why, as Up goes up, the compression ratio
reaches its maximum, ηmax, such that 4 < ηmax < 7, and then starts
decreasing with increasing Up and asymptotes to 4 as Up →∞,
in agreement with the physics of an ideal gas. The point of maxi-
mum compression is referred to as a turnaround point, since at this
point the η = η(Up) behavior changes from increasing with Up to
decreasing with Up. It corresponds to Pmax ≡ P(ηmax) ∼ 1–10 Gbar,
as mentioned above (typically, Pmax increases with Z). A simple
linear Us–Up dependence cannot capture this behavior of η, and
therefore, to adequately describe the shock Hugoniot at P ∼ Pmax,
in a series of papers Kalitkin and co-workers35,42,46,47 have advocated
the idea that the results of the quantum-statistical model can be very
reliably represented by a parabolic Us–Up relation

Us = c + bUp + aU2
p , c, b > 0, 0 < a≪ 1, (5)

and a small quadratic term (a ∼ 10−4 s/km) is all that is needed to
model a turnaround point. The use of (5) in the Rankine–Hugoniot
relations leads to

ηmax = 1 + 1
b + 2
√

ac − 1
,

Umax
p ≡ Up(ηmax) =

√
c
a

,

Umax
s ≡ Us(ηmax) = 2c + b

√
c
a

(6)

and

P(ηmax) = ρ0Us(ηmax)Up(ηmax) = ρ0
c
a
(b + 2

√
ac).

In the high-P regime (past the turnaround point) described by
the last lines of (1) and (2), corresponding to Up ≥ U∗∗p , the system
approaches the ideal gas limit,32 and η→ 4 from the right, as in
Figs. 1–4. The numerical values of the coefficients f and d in these
lines are given by the formulas32

f =
a[(4 − 3b)

√ c
a n − 3c(1 + n2)]

3a[L + c
√ c

a n(1 + n2)] − c(4 − 3b)n2 ,

d = L
⎧⎪⎪⎨⎪⎪⎩

a[(4 − 3b)
√ c

a n − 3c(1 + n2)]
3a[L + c

√ c
a n(1 + n2)] − c(4 − 3b)n2

⎫⎪⎪⎬⎪⎪⎭

2

,

(7)

with n = U∗∗p /Umax
p , U∗∗p being the (only positive) solution of (3).

For a given Z, these coefficients are functions of the parameters
c, b, and a only, which are themselves functions of Z only. In this
respect, the construction of the complete principal Hugoniot for
any material does not require any additional parameter except the
experimental low-P values of C and B or, equivalently, ρ0 and the

FIG. 1. Principal Hugoniot of Cu as P vs η (“Compression”): our new ana-
lytic model (solid line) vs the experimental data from Refs. 3, 21, and 51,
and the theoretical calculations in Refs. 52 and 53 using the average-atom
approximation implemented with three quantum-statistical models, specifically
Thomas–Fermi, Thomas–Fermi with quantum and exchange corrections, and
Hartree–Fock–Slater.
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FIG. 2. Principal Hugoniot of Ag as P vs η (“Compression”): our new analytic
model (solid line) vs the experimental data from Ref. 3 and the theoretical cal-
culations in Ref. 54 using the relativistic Green’s function quantum average atom
code Tartarus.

FIG. 3. Principal Hugoniot of Ir as P vs η (“Compression”): our new analytic
model (solid line) vs the experimental data from Ref. 55 (“Shock Wave Database”)
and our own theoretical calculations, similar to those in Ref. 56 for Pt, using the
Thomas–Fermi model with corrections (“Thomas–Fermi Corr.”).

isentropic bulk modulus Bs and its pressure derivative B ′s , in view of
the relationships36,37 C =

√
Bs(ρ0)/ρ0 and B = 1

4 [B
′
s(ρ0) + 1].

The numerical values of all the parameters required for the con-
struction of the principal Hugoniots of the two Hugoniot standards
Cu and Ag, as well as the two shock-ramp pusher standards Ir and
Pt, are listed in Table I. In each case, the values of C and B come
from fitting Us = C + BUp to the low-pressure shock-wave data of
Refs. 3 and 48.

Note that our values of C, B, A, c, b, and a for Cu are con-
sistent with those suggested by Kalitkin and Kuz’mina in Ref. 26:
3.9216, 1.5159, −0.821 × 10−2, 7.1103, 1.190 36, and 10.021 × 10−5,
respectively. In Ref. 26, only two of the three pressure regimes of
the principal Hugoniot were considered, namely, the low-P and
med-P ones. Our values of C and B for Cu are consistent with those

FIG. 4. Principal Hugoniot of Pt as P vs η (“Compression”): our new analytic model
(solid line) vs the experimental data from Refs. 57 and 58 and the theoretical calcu-
lations in Ref. 56 using the Thomas–Fermi model with corrections (“Thomas–Fermi
Corr.”).

coming from the most recent experimental shock-wave data on
Cu in Refs. 49 and 50: C = 3.91, B = 1.51, and C = 3.909 ± 0.007,
B = 1.505 ± 0.004, respectively. The complete low-P-regime
parameter set (C, B, A) is consistent with that of Ref. 24,
(3.899, 1.52,−0.009), from interpolation of the low-P experi-
mental and high-P theoretical data, which is analogous to our
interpolation between the low-P and med-P regimes through the
addition of an extra AU2

p term to Us = Us(Up) for the former.
Figures 1–4 compare the new model with the four sets of

experimental and independent theoretical data on Cu, Ag, Ir, and
Pt, respectively. As can be clearly seen, in each of the four cases,
agreement with the data is excellent.

A. Limit of the validity of the formula (5)
Kalitkin and Kuzmina33,34 assumed that the parabolic form (5)

is valid up to Up ∼ 2Umax
p . This assumption is based on a purely

empirical observation that a transition to the η→ 4 asymptotic
regime must occur at (much) higher Up, and so it must be safe to
use (5) up to Up ∼ 2Umax

p . Our results on the four shock standards
demonstrate that the value of U∗∗p /Umax

p ranges from ∼3.3 for Cu to
∼5.5 for Pt, i.e., that it is larger than 2. In fact, it can be as large as ∼10
(Fig. 5 of Ref. 32). Let us dwell on this point in some more detail.

The upper branch of P(η) beyond the turnaround point [the
third line of (2)] asymptotes to the value of η at which its denom-
inator turns zero. It is apparent that this value is 1. Hence, P(η)
across the turnaround point, as a combination of both lower [second
line of (2)] and upper branches, although it correctly reproduces the
turnaround feature of the Hugoniot, exhibits the unphysical behav-
ior η→ 1 instead of the correct η→ 4 limit as Up →∞. In this
subsection, we will estimate the limiting value of Up beyond which
the analytic form of the upper branch of P(η) is no longer valid.
That is, at Ups higher than some U lim

p , the system leaves the med-P
regime and enters the high-P regime described by the last lines of (1)
and (2).
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To determine U lim
p , the limiting value of Up mentioned

above, we first calculate the η that corresponds to Up = nUp(ηmax)
= n
√

c/a. It follows from (5) and one of the Rankine–Hugoniot
relations, namely, η = Us/(Us −Up),32 that

η(n
√

c/a) = 1 + 1
b + (n + 1/n)

√
ac − 1

. (8)

With n > 0 and n ≠ 1, n + 1/n > 2, and hence η(n
√

c/a) ≤ ηmax at
all n > 0, i.e., Up =

√
c/a does correspond to a maximum compres-

sion ratio. Note that η = 1 at n = 0 (Up = 0), and η→ 1 as n→∞,
i.e., η does asymptote to 1 as Up →∞, as mentioned above. Now,
to determine the value of U lim

p , we make the single assumption that
the transition from the med-P regime to the next high-P one occurs
at some η(n

√
c/a) > 4; in other words, in the high-P regime, the

system approaches its limiting compression ratio value of 4 from
the right, i.e., η remains larger than 4 at all Up ≥ Up(ηmax). It then
follows from the above formula that η(n

√
c/a) > 4 provided that

n + 1
n
<

4
3 − b√

ac
, (9)

from which N, the limiting value of n for the validity of (9), is found.
Let us first obtain the lower bound on ( 4

3 − b)/
√

ac. Since
ηmax > 4, it follows from (6) that b + 2

√
ac < 4

3 , or 4
3 − b > 2

√
ac, and

therefore

4
3 − b√

ac
> 2, (10)

supporting the assumption of Kalitkin and Kuzmina. In reality, how-
ever, 5 ≲ ( 4

3 − b)/
√

ac ≲ 15, except for low-Z (Z ≲ 10) (see Fig. 5),
and so we can put ( 4

3 − b)/
√

ac≫ 1. Then the solution of the
inequality (9) is

n < N ≈
4
3 − b√

ac
−
√

ac
4
3 − b

. (11)

FIG. 5. Comparison between N in (11), 𝓃 in (12), and n ≡ U∗∗p /
√

c/a, where
U∗∗p is the solution of (3), all three being functions of Z.

FIG. 6. Y defined in (23) as a function of Z.

In practice, the (approximate) relation N = ( 4
3 − b)

√
ac can be used,

which is very accurate and agrees with Kalitkin and Kuzmina, since
N > 2.

Finally, we note that the exact transition point between
the med-P and high-P regimes as the solution of (3) can be
approximated very accurately by the formula

U∗∗p ≈ 𝓃Umax
p , 𝓃 ≡ 2

3

4
3 − b√

ac
≈ 2

3
N, (12)

that is,

U∗∗p ≈
2
3

4
3 − b

a
. (13)

The values of N, 𝓃, and n ≡ U∗∗p /
√

c/a, where U∗∗p is the solu-
tion of (3), are compared with each other as functions of Z in Fig. 5.
It can clearly be seen that 𝓃 is a very good approximation for n; in
fact, the relative error does not exceed a few percent for all Z.

Using 𝓃 defined by (12) as n in (7) leads to the approximate
relations

f = 9a[2(4 − 3b)2 − 81ac]
729a2L + 162ac(4 − 3b) − 4(4 − 3b)3 , d = L f 2. (14)

The use of U∗∗p from (13) in (3) leads, via c≪ (b − 4
3)U

∗
p and

c≪ aU∗∗2
p , to the (approximate) formula

Y ≡ 2
27
(4 − 3b)3/2

aL1/2 = 1. (15)

Figure 6 shows Y as a function of Z and demonstrates that for Z ≳ 10,
Y ≈ 1.02 ± 0.05, and so (15) is indeed quite accurate.

It follows from (15) that a ≃ 2
27(4 − 3b)3/2/L1/2. The use of

b(Z) ≈ const = 1.18 in this formula (see Table I: the average of the
four values of b is 1.181) leads to a ≈ 0.023/L0.5, which establishes
the physical meaning of the parameter a of the TFK model as being
directly related to the total ionization energy. The above formula is
quite accurate as well: the four values of a × 105 to be compared with
the corresponding values in Table I are 10.86, 7.933, 5.832, and 5.787.
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Using the above relation between a, b, and L leads to more
simplified analogs of (7): f = [2(4 − 3b)2 − 81ac]/[18c(4 − 3b)] and
d = (4 − 3b)[2(4 − 3b)2/(243ac) − 1

3 ]
2. The use of b = 1.18 can

simplify these formulas even further.

B. Grüneisen parameter along the principal Hugoniot
Pressures in excess of ∼30 TPa can be achieved in laser-

driven shock impedance matching experiments using the Cu (or
Ag) standard.59–61 In such experiments, (precise) knowledge of
the release isentropes (adiabats) is needed. Indeed, if the shock
impedance of Cu (or Ag) is higher than that of most of the sam-
ple materials, which is expected to be the case, then the adiabatic
release description is more important for reducing the experimental
data uncertainties than the standard Hugoniot itself. Then, (pre-
cise) knowledge of the Grüneisen parameter becomes necessary;
for example, the temperature along the adiabat is given by T(ρ)
= T(ρref) exp{∫ ρ

ρref
[γ(r)/r]dr}, where γ(r) is the Grüneisen para-

meter, which is assumed to be a function of density only, and ρref is
some reference density [to which T(ρref) corresponds]. In this sub-
section, we suggest a way to calculate the Grüneisen parameter along
the principal Hugoniot in our analytic model. We choose Cu as the
prototype for this calculation.

Johnson36–38 derived the exact relation

Bs

P
− C

Up
= 3S − 1 + S(2S − 2 − γ)Up

C
, (16)

where γ ≡ 1
ρ
∂P
∂E
∣ρ is the Grüneisen parameter, S the (instan-

taneous) slope of the tangent line of the Us–Up curve, and C
the Up = 0 intercept of the tangent line (in other words, Us = C
+ SUp). All the quantities in (16), including γ, are on the Hugo-
niot and thus are functions of a Hugoniot variable, such as Up,
that we chose for the new analytic model. In Ref. 38, Johnson
claimed that “For small Up, Bs/P diverges as 1/Up, but, as Up
increases, Bs/P decreases to γ + 1” and remains there for Up ≳ 10
km/s and well above the turnaround point. In other words, Bs/P
≈ γ + 1 in the entire med-P regime, and perhaps in the high-P
regime, too. We can easily check whether the latter is the case. Tak-
ing into account that the approach to the ideal gas regime should
agree with the large-Up expansion of Us(Up) given by the last line
of (1), under the assumption that Debye–Hückel theory62 describes
very high-temperature gas, for large Up, γ = 2

3 − β/U3
p , β > 0.38 Then,

the use in (14) of the corresponding asymptotic forms of C and S
from Ref. 32 and β = d/ f 332 gives Bs/P = 5

3 − β/U3
p , i.e., γ + 1. Thus,

this relation holds in the high-P regime. Assuming its validity in the
med-P regime, using γ + 1 on the left-hand side of (16), along with
C = c − aU2

p and S = b + 2aUp, and solving for γ gives

γ ≡ γ(Up) = 2(b − 1) + 3aUp +
c

Up
. (17)

At the turnaround point, γ(Umax
p ) ≡ γmax = 2(b − 1) + 4

√
ac, which

is equal to 2/(ηmax − 1), in agreement with Jonhson’s38 constraint
on γ that γ = 2/(η − 1) at every point on the Hugoniot where C = 0,
such as the turnaround point, or the Up →∞ limit in which η = 4
and γ = 2

3 .
The Grüneisen gamma defined in (17) has a minimum, at

Up = 1/
√

3
√

c/a = Umax
p /
√

3, and its value at this Up is 2(b − 1)

+ 2
√

3
√

ac, slightly below γmax. As Fig. 6 clearly demonstrates, once
Up is greater than ∼7 km/s or so, γ goes through a very broad min-
imum with very small variation in γ,38 and in the area of this broad
minimum, γ ≈ 0.438 (for Cu, the actual value is ∼0.45).

Now, γ in the low-P regime is modeled as63

γ(Up) = γ0 + g1Up + g2U2
p , g1 < 0, (18)

where γ0 is the ambient Grüneisen parameter and g1 and g2 are
given by formulas from Ref. 63. For Cu, we slightly modify the cor-
responding formulas to have the resulting γ continuous and smooth
across the low-P–med-P transition point U∗p :

g1 = 3(a + c
U∗2

p
) − 2

γ0 − 2(b − 1)
U∗p

, (19)

g2 =
γ0 − 2(b − 1)

U∗2
p

− 2c
U∗3

p
. (20)

Similarly, in the high-P regime, γ is modeled as

γ(Up) =
2
3
− d/ f 3

U3
p
+ g4

U4
p
+ g5

U5
p

. (21)

The values of g4 and g5 are then determined by imposing the conti-
nuity and smoothness of γ across the med-P–high-P transition point
U∗∗p :

g4 =
2d
f 3 U∗∗p + 4cU∗∗3

p + 10(b − 4
3
)U∗∗4

p + 18aU∗∗5
p , (22)

g5 = −[
d
f 3 U∗∗2

p + 3cU∗∗4
p + 8(b − 4

3
)U∗∗5

p + 15aU∗∗6
p ]. (23)

Finally, to obtain the Grüneisen parameter as a function of η,
we use the formulas for Up = Up(η) from Ref. 32 in each of the three
P regimes. The entire Grüneisen gamma for Cu along its principal

FIG. 7. Grüneisen gamma for Cu along its principal Hugoniot vs η (“Compression”):
our new analytic model (solid line) vs the theoretical results of Ref. 64, the results
of Refs. 3 and 65 using some functional forms of γ(ρ) applied to the corresponding
experimental data, and the theoretical model of Ref. 66.
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Hugoniot, as a combination of those in the corresponding P regimes,
given by (17), (18), and (21), is shown in Fig. 7.

Of course, our approach to calculate the Grüneisen parameter
along the Hugoniot requires further detailed analysis of the assump-
tions made here, for their validation, as well as more examples of real
cases such as that of Cu considered in this work. We will present a
more detailed study of the Grüneisen gamma along the Hugoniot in
a subsequent publication.

III. CONCLUDING REMARKS
The following is a brief summary of the findings of this work.

We have presented the principal Hugoniots of four shock standards,
namely, two Hugoniot standards Cu and Ag and two pusher stan-
dards Ir and Pt for modified shock-ramp experiments, using the
analytic framework established in our previous publication.32 All
four sets of relevant parameters are summarized in Table I.

We have established a theoretical limit for the validity of the
parabolic representation (5) for the TFK model, namely, (11), and
its practical implementation in terms of the formulas (12) and (13),
which very closely approximate, respectively, the exact values of
n = U∗∗p /Umax

p and U∗∗p as the solution of (3).
Let us note that in a more realistic case of a shock compres-

sion of a substance beyond the corresponding turnaround point,
the Hugoniot must be modeled taking into account the well-known
effects of the contributions of both the equilibrium radiation of hot
plasma and relativistic effects.52,67–69 Indeed, at a turnaround point,
Up ∼ 300 km/s (see Table I), which constitutes 0.1% of the speed of
light, and at the med-P–high-P transition point, Up ∼ 1700 km/s,
which is about 0.5% of the speed of light. Hence, as the system enters
the high-P regime, relativistic effects are expected to start mani-
festing themselves and eventually to dominate the evolution of the
system at even higher Up. Our model can in principle be modified
to incorporate these effects. For instance, the radiation-dominated
(the so-called strong shock) regime can be taken into account by
replacing the equations for Us(Up) and P(η) describing the high-
P regime with their counterparts stemming from the physics of a
photon gas. This goes beyond the scope of the present work, but will
be undertaken in a subsequent study.

We also note that the new model discussed in this work does
not incorporate potential electronic shell effects in our med-P and
high-P regimes. If present, they manifest themselves in terms of
some irregularities of P = P(η) over some (small) regions of P; such
irregularities are seen, for example, in Fig. 1 in the theoretical data on
Cu around 106 GPa from Refs. 52 and 53 and in Fig. 2 in the theoreti-
cal model for Ag around ∼ 105.5–106.5 GPa from Ref. 54. Such effects
cannot be predicted by the new model, but, if firmly established, they
can be added to the model by considering additional region(s) of P
described by the corresponding Us = Us(Up) functional forms. We
plan to undertake such an addition of electronic shell effects to the
new model in a subsequent study.

Our new analytic model of the principal Hugoniot32 can be
used for the validation of the P–V–T EOS, by comparing the Hugo-
niot produced by the EOS with that given by the model. Also, the
new model itself can be used as a basis for EOS construction. Indeed,
if the Grüneisen parameter along the Hugoniot is available from, for
example, the approach discussed in this work, then it can be used
in the Mie–Grüneisen-type EOS P − PH = γHρ(E − EH),70 where

the subscript “H” indicates that the corresponding variable is that
under shock-compression conditions. This EOS can then be brought
into direct correspondence to the more familiar Mie–Grüneisen
(M–G) EOS P − Pc = γρ(E − Ec), where the subscript c indicates cold
(T = 0) conditions, since there exists a direct algebraic connection
between γH (of this work) and γ of the M–G EOS.70 In this way, the
Cu Hugoniot standard can be directly related to the Cu EOS stan-
dard,66 the reliability of which is critical for the ruby pressure scale,
as discussed in Sec. I.

The analytic model developed in our previous study32 and
applied to four shock standards in this work can be used to cal-
culate the Hugoniots of other substances. In this context, analytic
knowledge of the regimes of the Hugoniot past the turnaround point
is very important. In a recent publication,71 a team of astronomers
reported a detailed study of a pair of shock waves produced by the
collision of two clusters of galaxies that occurred roughly a billion
years ago. The shocks that are associated with cluster mergers are
known as radio relics, and they can be used to probe the prop-
erties of the intergalactic space within the cluster, known as the
intracluster medium, as well as intracluster dynamics. The study
focused on a particular cluster called Abell 3667, which contains at
least 550 galaxies and which is still coming together. It was con-
cluded that the shock waves are propagating through the cluster
at velocities of ∼1500 km/s, which are roughly four times larger
than the velocities corresponding to turnaround points, Umax

s = 2c
+ b
√

c/a ≈ b
√

c/a ∼ 1.2
√

105 ∼ 400 km/s (see Table I). Moreover,
at such shock velocities, many elements, especially the low-Z ones,
will be under conditions that are beyond the validity of Kalitkin’s
parabolic representation (5), i.e., they will be in the high-P regime
considered in this work. Hence, to predict the properties of the
intracluster medium and to describe intracluster dynamics, an ana-
lytic model of the principal Hugoniot in the high-P regime is a
must. Once the analytic formulas describing the high-P regime are
available [the last lines of both systems of Eqs. (1) and (2)], the
basic mechanical and thermodynamic properties of a material under
intergalactic shock, such as the bulk modulus, Grüneisen para-
meter, energy, and temperature, along the principal Hugoniot can
be derived from the Rankine–Hugoniot relations and (16) using
the new model and some additional assumptions on the Grüneisen
gamma.
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